Теория
Инверторы. Принцип действия.
Инвертором называется прибор, схема, или система, которая создает переменное напряжение при подключении источника постоянного напряжения. Существует другой способ определения: инверсия – функция обратная выпрямлению.
Большинство потребителей даже и не задумываются какова форма выходного напряжения инвертора или ББП. А ведь большинство представленных на рынке приборов выдают не «чистый синус», а так называемый «модифицированный синус»
Принцип выработки электроэнергии с помощью ветрогенераторов
Таким образом, за счет вращения ветроколеса и посаженных с ним на одну ось постоянных магнитов внутри медной обмотки, мы получаем на контактах генератора разность потенциалов, т.е. электрическое напряжение U [B], которое дает нам электрическую мощность Nэл. [Вт], а с течением времени и электрическую энергию Ээл. [Втxч]:
Автономное электроснабжение дома, дачи
Если вы внимательно ознакомитесь с недостатками централизованных сетей для электроснабжения частных домов, то поймёте, почему генерация своей собственной электроэнергии станет для Вас наиболее разумным решением в большинстве случаев.
Солнечные батареи своими руками ?
Я построил ветрогенератор для электрообеспечения этого участка. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия.
Персональные зеленые электростанции
Наступает эпоха извлечения энергии из чистых возобновляемых источников. Нам надо построить экологически чистое будущее, и времени для этого осталось не так уж много. Выход есть – альтернативные источники энергии и применение технологии Smart Grid (Интеллектуальные Сети).
Электрический аккумулятор. Строение и принцип работы.
Важной составной частью электрической станции, работающей от солнечной энергии, является аккумуляторная батарея. Именно в ней запасается выработанная в светлое время суток электрическая энергия, которая может оказаться востребованной после захода Солнца.
Солнечные коллекторы. Какие они бывают?
На сегодняшний день солнечная энергетика развита достаточно обширно, это дает возможность устанавливать солнечные панели различных комплектаций и размеров. Этот аспект позволяет солнечным коллекторам обеспечивать хозяйственные нужды человека, такие как отопление и снабжение горячей водой.
Существует несколько видов ветряков. Более того существует несколько их классификаций. Каждый из видов имеет много преимуществ.
Не нужно быть великим мыслителем, чтобы понять, что энергетическое будущее земли именно за возобновляемыми источниками энергии и, в частности, за солнечной энергетикой. Ведь всё гениальное – просто.
Энергия ветра на пользу людям
В средней полосе России ветряк может стать хорошим подспорьем, если у вас отсутствует электричество и его не будет в дальнейшем. Вырабатывая в среднем 150 кВт/ч в месяц он поможет хорошо сэкономить топливо и ресурс теплового генератора. Ресурс же самого ветрогенератора измеряется десятилетиями. При этом ветряк требует минимального обслуживания.
Солнце лишь одна из миллиардов звезд, но оно источник энергии для всего живого и для самой Земли. Ископаемое топливо расходуется такими темпами, что его запасы истощатся где-то во второй половине следующего столетия
Принцип преобразования солнечной энергии в электричество
Гипотеза Планка объяснила явление фотоэффекта, открытого в 1887 г. немецким ученым Генрихом Герцем и изученного экспериментально русским ученым Александром Григорьевичем Столетовым, который путем обобщения полученных результатов установил следующие три закона фотоэффекта….
Солнечная энергетика является одним из крупнейших сегментов альтернативной энергетики и отрасли использования возобновляемых источников энергии (ВИЭ).
Сегодня принято различать три основных технологии солнечной энергетики: энергия солнца может использоваться для генерации электроэнергии (фотовольтаика, photovoltaics, PV), для получения концентрированной тепловой энергии с целью последующей электрогенерации (concentrated solar power, CSP) или для непосредственного нагрева теплоносителя, наиболее часто, водного (solar thermal).
Солнечная электростанция своими руками. Подбор компонентов.
Как расчитать параметры компонентов солнечной электростанции? Сколько солнечных батарей, какие аккумуляторы, для чего нужен контроллер заряда, как установить солнечные модули, инвертор и с чем его едят – все Вы узнаете на этой странице…
Солнечные батареи нового поколения – полный обзор видов. Жми!
20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня солнечными батареями уже никого не удивишь.
Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.
Типы СБ
Принцип работы солнечной батареи. (Для увеличения нажмите)Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли.
Каждый вид имеет свои характеристики и эксплуатационные особенности.
Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет.
В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.
Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.
Монокристаллические пластины
Монокристаллическая СБОтличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.
Это дает возможность получать самый высокий КПД — до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.
Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.
Поликристаллические солнечные панели
Поликристаллическая СБПластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).
Однако главным преимуществом этого вида солнечных панелей — в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.
Аморфные панели
Аморфная СБАморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.
Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.
Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.
Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.
Гибридные солнечные панели
Гибридные СБОсобенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.
Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.
Полимерные батареи
Полимерная СБМногие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.
Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается.
КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.
Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.
С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.
Солнечная черепица
Солнечная черепицаДабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы.
Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.
Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях.
При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.
В любом случае общие затраты на электроэнергию снижаются.
Лидером по производству солнечной черепицы является компания из России — «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.
Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.
Преимущества солнечной черепицы:
Солнечное окно
Солнечное окноБуквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows».
Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.
Подобные панели по полной используют в высотках европейских городов.
Это позволяет существенно экономить электроэнергию.
Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.
Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.
Гибридные фотоэлементы
В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».
Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.
Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.
Системы на основе биологической энергии
Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.
Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.
Варианты таких батарей впечатляют:
Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.
Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:
Ученые сделали прорыв в преобразовании солнечной энергии с помощью сегнетоэлектриков
Солнечные батареи в скором времени смогут стать еще лучше благодаря нового команды исследователей, которые смогли улучшить преобразование солнечного света в энергию.
Их работа показывает, как новый материал может быть использован для извлечения максимума мощности из небольшой части спектра солнечного света с эффективностью преобразования, которая выше теоретического максимального значения, которое называется пределом Шокли-Квиссера. Это открытие может сделать солнечные панели гораздо энергоэффективнее.
Толчком послужила работа полувековой давности российского физика Владимира Фридкина, который в свое врем был приглашенным профессором в Дрексельском университете, который также известен как один из изобретателей ксерокса.
Команда, в которую вошли ученые из Дрексельско университета, Института кристаллографии Российской академии наук, Университета Пенсильвании и Американской Военно-морской исследовательской лаборатории недавно опубликовали свою работу в журнале Nature Photonics.
Их статья называется «эффективность преобразования мощности, превышающая предел Шокли-Квиссера в сегнетоэлектрическом изоляторе», которая поясняет, как кристалл титаната бария может преобразовать солнечный свет в электрическую энергию гораздо лучше, чем это позволяет предел Шокли-Квиссера для данного материала, который не поглощает почти никакого света в видимой области спектра – только ультрафиолет. Явление, которое является основой нового открытия, наблюдал и Фридкин около 47 лет назад, когда он обнаружил физический механизм преобразования света в электрическую энергию – этот метод в настоящее время используется в солнечных элементах. Механизм основан на сборе “горячих” электронов, тех, которые несут дополнительную энергию в фотоэлектрическом материале при возбуждении под воздействием солнечного света, прежде чем они теряют энергию. Этот так называемый “объемный фотогальванический эффект” мог бы стать ключом к революции в сфере солнечной энергии.
Преобразование солнечного света ограничено из-за конструкции солнечных батарей и электрохимических характеристик, присущих материалам для их изготовления.
– В обычной солнечной батарее – созданной на основе полупроводников – поглощение солнечного света происходит на границе раздела между двумя областями, одна из которых содержит избыток носителей отрицательного заряда, называемых электронами, и другой, содержащей избыток носителей положительного заряда, называемые «дырами», – отметила Алессия Полеми, профессор-исследователь в Дрекселе и один из соавторов статьи. Для генерации электронно-дырочных пар на границе раздела, которые необходимы для электрического тока, фотоны солнечного света должны возбуждают электроны до уровня энергии, что позволяет им покинуть валентную зону и перейти в зону проводимости – разница в уровнях энергии между этими двумя группами называется «ширина запрещенной зоны» (энергетической щели). Это означает, что в фотогальванических материалах не весь доступный солнечный спектр может быть преобразован в электрическую энергию. В итоге энергия фотонов солнечного света, которая больше, чем ширина запрещенной зоны, теряется возбужденными электронами в виде тепла, а не конвертируется в ток. Этот процесс уменьшает количество энергии, которая может быть получена от фотопанелей. – Светоиндуцированные носители генерируют напряжение, и их поток представляет собой ток. Обычные солнечные батареи вырабатывают энергию, которая является продуктом тока и напряжения. Это напряжение, и, следовательно, мощность, которая может быть получена, также ограничены шириной запрещенной зоны, – заявила ученый.
Фридкин и его коллеги из Института кристаллографии в Москве наблюдали необычно высокое необычно высокое фотонапряжение при изучении йодида сегнетоэлектрического сульфида сурьмы -материала, который не имеет никакого стыка, разделяющего носители, он утверждал, что симметрия кристалла может быть источником его замечательных фотоэлектрических свойств. Позже он объяснил это как “объемный фотогальванический эффект”, который очень слабый и включает транспортировку фотогенерированных горячих электронов в определенном направлении без столкновений, которые вызывают охлаждение электронов.
Предел преобразования солнечной энергии, согласно теории Шокли-Квиссеру, основывается на предположении, что вся эта избыточная энергия теряется в виде тепла.
Но открытие команды показывает, что не вся избыточная энергии горячих электронов теряется, и что энергия может быть фактически извлечена как энергия еще до термализации. Обойти предел удалось благодаря двум механизмам.
Первый – это объем фотогальванического эффекта с участием горячих носителей, и второй – сильное поле скрининга, которое приводит к ударной ионизации и размножению этих носителей, увеличивая квантовый выход.
Ударную ионизацию, которая приводит умножению носителя, можно сравнить с массивом домино, в котором каждая кость домино представляет собой связанный электрон.
Когда фотон взаимодействует с электроном, он возбуждает электрон, при условии сильного поля, ускоряет и 'ионизирует' или высвобождает другие связанные электроны на своем пути, каждый из которых, в свою очередь, также ускоряется и вызывает высвобождение других.
Второй механизм, поле экранирования, это электрическое поле, которое присутствует во всех сегнетоэлектрических материалах. Но применяется наноразмерный электрод, который собирает ток в солнечном элементе, поле усиливается, и это оказывает усиливающий эффект соединения ударной ионизации и несущего умножения.
Проводя аналогию с домино, поле приводит в действие каскадный эффект, который гарантирует, что он продолжится от одной костяшке к другой.
– Этот результат является очень перспективным для использования в солнечных элементах с высоким КПД на основе применения сегнетоэлектриков, имеющих энергетическую щель в более высокоинтенсивной области солнечного спектра, – отметил еще в свое время Фридкин.
Электрический изолятор может быть использован для повышения преобразования солнечной энергии. Титанат бария поглощает менее одной десятой части спектра Солнца.
С помощью своего устройства команда ученых смогла добиться преобразования мощность на 50% эффективнее, чем теоретический предел для обычного солнечного элемента, построенного с использованием этого материала или материала такого с такой же запрещенной зоной.
Электроснабжение при помощи солнечных батарей: обзор панелей на отечественном рынке
Статья поможет определиться с необходимостью приобретения автономных источников электроснабжения, широко охватывает тему автономного электроснабжения с помощью солнечных батарей, достоинства и недостатки данного источника энергии.
Все большую популярность приобретают солнечные батареи в связи со все большей их доступностью как в финансовом плане, так и на фоне расширения ассортимента в торговых сетях. Написано много статей, в которых приводятся технико-экономические обоснования внедрения гелиостанций (так называют системы генерации солнечной энергии). Правда, срок их окупаемости достигает нескольких лет.
Большой сегмент потребителей переходит к автономному электроснабжению не столько из-за желания сэкономить, сколько по причине обеспечения электропитанием в районах, где есть перебои с электроснабжением или такового нет вовсе.
Широко используется генерация солнечной энергии для дачных домиков в летнее время. Они характеризуются низкой мощностью потребления и сезонностью работы солнечных батарей.
Более редкие случаи — полная электрификация дома альтернативными источниками. Но построение систем генерации солнечной энергии для разных условий эксплуатации принципиально одинаково.
Итак, рассмотрим этот вопрос обстоятельно и по порядку.
Типы солнечных батарей
Иному обывателю и невдомек, что количество разновидностей солнечных батарей уже приближается к десятку. Чтобы как-то структурировать в сознании все многообразие светоприемников, разделим их на 2 класса:
Кремниевые солнечные батареи
Широко представлены на рынке монокристаллическими и поликристаллическими панелями. Также к этой группе отнесем аморфные кремниевые панели и гибридные солнечные ячейки.
Как понятно из названия класса, изготавливаются эти светоприемники из кремния и кремневодорода.
Распространение солнечных модулей на основе кремния обусловлено их высокой удельной энергоэффективностью, но достаточно сложный технологический процесс изготовления делает их недешевыми.
Монокристальные солнечные панели — это квадраты черного цвета со скошенными углами. На данный момент у таких панелей самый высокий КПД — до 22%.
Все светочувствительные ячейки монокристаллической панели ориентированы в одном направлении, с одной стороны этим объясняется относительно высокий КПД, с другой стороны панель должна быть всегда обращена к солнцу для получения максимальной энергоотдачи.
При рассеянном свете, например, в пасмурную погоду, на рассвете и закате, электрические параметры генерации электроэнергии совсем не впечатляют.
Другой тип солнечных панелей: поликристаллические — имеют более низкий КПД по сравнению с монокристаллами (порядка 12–18%), но благодаря разнонаправленности кристаллов кремния в панели достигается лучшая энергоэффективность в рассеянном свете. Поликристаллические панели можно узнать по правильной квадратной форме пластин темно-синего цвета с морозным рисунком.
Аморфные кремниевые панели (или, как их обозначают, а-Si) — самые низкопроизводительные в линейке кремниевых приемников солнечной энергии. Их КПД находится на отметке в 5–6%. Но их применение может быть оправдано. И вот почему:
- во-первых, степень поглощения светового потока у этих панелей в 20 раз выше, чем у других кремниевых конкурентов;
- во-вторых, хаотичная ориентированность светочувствительных ячеек повышает эффективность a-Si в пасмурную погоду.
Гибридные преобразователи светового потока — это объединение аморфного кремния с микрокристаллами. Такие панели схожи по свойствам с поликристаллическими элементами, с той лишь оговоркой, что их производительность в рассеянном свете гораздо выше. Также кроме ультрафиолетового спектра гибридные панели могут преобразовывать в электричество излучение инфракрасного диапазона.
Пленочные солнечные батареи
Достаточно новая разработка в сфере солнечных светоприемников. Нужно сказать, что в данный момент на российском рынке трудно встретить пленочные модули, что обусловлено их высокой стоимостью. Поэтому ограничимся перечислением их типов.
К пленочным отнесем элементы на основе теллурида кадмия (CdTe), диселенида меди-индия (CIS), диселенида меди-индия-галлия (CIGS) и полимерные. Полимерные панели — это наиболее перспективное направление развития пленочных технологий, так как производители обещают их низкую стоимость, правда и КПД всего 6%.
Прежде чем углубиться в описание солнечных панелей, несколько слов о её параметрах. На рисунке ниже приведена вольтамперная характеристика солнечной панели (красным цветом) и кривая изменения мощности (синим цветом). На графике обозначены точки, которые встречаются в технических характеристиках солнечных батарей.
Так, ток короткого замыкания — это ток, который возникает при замыкании цепи солнечной батареи (напряжение батареи при этом равно нулю). Напряжение холостого хода, наоборот, параметр разомкнутой цепи (ток при этом равен нулю).
Эти два режима не являются рабочими. Номинальный рабочий режим показан желтой точкой на пересечении пунктирных линий. В этой точке максимальный рабочий ток и напряжение.
Самое эффективное использование солнечной батареи соответствует этой рабочей точке.
На российском рынке в большинстве своем представлены моно- и поликристаллические панели в большом ассортименте. Как и следовало ожидать, большинство из них — китайского производства. Но ведь это и неудивительно: Китай — лидер в производстве и продаже систем генерации солнечной энергии. Кроме того, на рынке присутствуют немецкие (Calixo, SCHOTT) и японские (SHARP) солнечные батареи.
Российские же «производители» солнечных батарей — это фирмы, которые в большинстве своем продают китайскую продукцию, выдавая её за свою. Также широко развит сегмент производителей, занимающихся сборкой панелей из китайских комплектующих. Но не все так безнадежно.
Россия может «похвастаться» и своими производителями солнечных панелей. В Новочебоксарске находится завод «Хевел», который специализируется на производстве тонкопленочных гибридных панелей.
В Краснодаре на заводе «Сатурн» изготавливают солнечные батареи на основе арсенида галлия, продукция ориентирована, в основном, на космическую промышленность.
Два завода, которые наиболее ориентированы на производство бытовых модулей, расположены в Зеленограде («Телеком-СТВ») и Рязани («Рязанский завод металлокерамических приборов», РЗМКП).
Ассортимент рязанских солнечных батарей ограничен двумя основными типами:
- RZMP-130-Т — имеет выходное напряжение 15,9–17,5 В, диапазон мощностей 105–145 Вт;
- RZMP-220-Т — имеет выходное напряжение 27,7– 29,1 В, диапазон мощностей 200–240 Вт.
«Телеком-СТВ» предлагает гораздо большее количество артикулов своей продукции: моно- и поликристаллические модули, монокристаллические модули с повышенной эффективностью, гибкие и специализированные солнечные батареи. Выходное напряжение модулей адаптировано как для низковольтных систем (17–18,5 В), так и высоковольтных (34–38 В).
При этом цена этих солнечных батарей в полтора раза ниже рязанских. Например, рязанская RZMP-130-Т мощностью 120 Вт обойдется покупателю в 16100 рублей, а зеленоградскую ТСМ-120А мощностью 123 Вт можно приобрести за 9658 рублей. При этом вес и габариты зеленоградских панелей меньше рязанских.
Единственное, что говорит в пользу рязанских солнечных батарей — это подробная информация об изделии.
Отдельно скажем несколько слов о заводе «Хевел», что в Новочебоксарске. Единственный завод в России, который начал изготавливать панели на основе аморфного кремния с вкраплениями микрокристаллов по микроморфной технологии.
Учитывая, что на значительной части территории России большой процент пасмурных дней в году, панели «Хевел» имеют большой потенциал в борьбе за рынок с моно- и поликристаллами. В розничной продаже панелей «Хевел» пока нет, но, судя по оптовым ценам, потребителю придется выложить порядка 10000 рублей за 125-ти ваттную панель.
Прямым конкурентом «Хевел» являются тонкопленочные гибридные панели тайваньского производителя Green Energy Technology. Тайваньские панели уже сейчас можно приобрести за 7000 рублей.
Сравнительная таблица российских, тайваньских и китайских солнечных батарей
Производитель Наименование Технология производства Пиковое напряжение, В Пиковый ток, А Пиковая мощность, Вт Габариты, мм Ориентировочная цена на российском рынке, руб. «Телеком-СТВ», Зеленоград ТСМ-100А поликристалл 17 5,6 96 1050х665х43 8429 РЗМП, Рязань RZMP-130-T поликристалл 15,9 6,65 105 1490х670х36 14600 «Хевел», Новочебоксарск HEVEL P7 микроморфная 56,6 2,21 125 1300х1100х24 10000 Green Energy Technology, Тайвань GET-115AT2 аморфный кремний 93,9 1,22 115 1300х1100х20* 7000 Chinaland Solar Energy, Китай CNH100-36M монокристалл 19,3 5,18 100 1200х540х30 6350
* — без алюминиевой рамки
В конечном итоге потребителю самому решать, какие панели ему выбрать. В качестве рекомендации хочется отметить, что для автономного электроснабжения дома можно порекомендовать поликристаллические модели солнечных батарей. Да, монокристаллические панели более эффективны, но не стоит забывать, что это довольно условно.
Максимальная мощность монокристаллических элементов будет достигнута лишь в солнечный день с использованием систем поворота светочувствительных элементов. Поэтому данные панели в большей степени подойдут жителям южной полосы России, где количество солнечных дней максимально.
В остальных же регионах при проектировании систем автономного электроснабжения имеет смысл обратить свое внимание на сравнительно новые панели, произведенные по микроморфной технологии, которые способны преобразовывать в электричество не только солнечный ультрафиолет, но и инфракрасное излучение.
Это их достоинство может с лихвой покрыть недостаток низкого КПД.
Замечу напоследок, что лично я отдал предпочтение поликристаллической панели, поскольку предназначена она для временного электроснабжения дачного домика в летний период. Отсюда следует, что планируемая нагрузка — небольшая, световой день продолжительный и солнечный. Поэтому поликристаллическая солнечная батарея в моем случае наиболее оптимальна.
Влад Тараненко, рмнт.ру
Рассчитываем и изготавливаем солнечные батареи своими руками
Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро- и солнечная энергетика.
Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно-погодно-сезонными колебаниями интенсивности солнечного потока.
Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:
- Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
- Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
- Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.
Солнечная батарея — что это такое
Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.
Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.
Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.
Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.
В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.
Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото-эдс величиной 0,5~0,55 В.
Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.
Соединяя такие модули в батарею и комбинируя параллельно-последовательное их подключение, можно получить широкий диапазон значений выходной мощности.
Преимущества и недостатки этого вида энергии
Основные недостатки солнечных батарей:
- Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
- Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
- Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
- В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
- Большая площадь, требующаяся для конструкции достаточной мощности.
- Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
- Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.
Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние.
Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много б?льшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.
Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.
Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.
Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:
- Отсутствие механических преобразований энергии и движущихся частей.
- Минимальные расходы на эксплуатацию.
- Долговечность 30~50 лет.
- Тишина при работе, отсутствие вредных выбросов. Экологичность.
- Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
- Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
- Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.
Конструктивные особенности
В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.
Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12-часовой солнечный день она получит не более 42% суммарного светового потока из-за изменения угла его падения.
Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.
Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.
То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.
Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12-ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.
Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.
При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.
Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.
Подбор материалов для создания панели
В китайских интернет-магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.
Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности.
Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели.
Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.
Можно приобрести такие модули и в российских онлайн-магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:
- Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
- Ток: КЗ — 1,5 А, рабочий — 1,2 А.
- Рабочая мощность — 0,62 Вт.
- Габариты — 52х77 мм.
- Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.
Изготовление солнечной батареи для дома своими руками
Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.
Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.
Рассчитываем комплектующие
Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.
Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.
Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.
Совет: Элементы солнечной панели соединяются параллельно-последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.
Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.
Реально эта цифра будет меньше из-за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.
Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ? 56 Вт.
Или в течение 12-часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ? 0,28 кВтч.
Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:
- Длина — 15 x 52 = 780 мм.
- Ширина — 77 x 6 = 462 мм.
Для свободного размещения всех пластин примем габариты нашей рамы: 900x500 мм.
Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.
Также нам потребуются:
- Паяльник электрический 40 Вт.
- Припой, канифоль.
- Монтажный провод.
- Силиконовый герметик.
- Двусторонний скотч.
Этапы изготовления
Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.
Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу-подложку. Мы предлагаем другой вариант:
При желании вместо задней стенки можно залить раму сзади каким-нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.
Схема подключения электроснабжения дома с использованием наших батарей
Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.
Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.
Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м2 = 20 м2.
Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.
Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.
Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.
Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.
Делаем выводы
При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.
Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.
В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.
Видео о том, как изготовить прибор для сбора солнечной энергии самому
Принцип работы солнечной батареи: преобразование энергии в электрическую в пасмурную и хорошую погоду
До недавнего времени идея обеспечить свой дом автономным источником электрического питания казалась чем-то фантастическим и нереальным.
В наши дни такая возможность появилась благодаря разработанным учеными и конструкторами специальным фотопластинам, которые лежат в основе принципа работы солнечной батареи.
В Европе многие владельцы частных домов уже установили подобное оборудование и даже продают излишки полученной энергии. Такие устройства применимы в регионах, где очень много солнечных дней.
Важная информация о технологии
Если детально рассматривать солнечную батарею, принцип работы понять несложно. Отдельные участки фотопластины меняют проводимость на отдельных участках под воздействием ультрафиолетового излучения.
В результате происходит преобразование солнечной энергии в электрическую, которую можно сразу использовать для электроприборов, или же накапливать на съёмных автономных носителях.
Чтобы более подробно понять такой процесс, нужно оценить несколько важных аспектов:
Принцип действия
Эти устройства многие экологи называют источником энергии будущего. Дело в том, что они, если не считать само производство приборов, экологически безопасны.
На панель с отрицательным зарядом воздействует ультрафиолетовый свет, который способствует прогрессивному формированию дополнительных отрицательных электронов и так называемых «дырок». Воздействие электрического поля, находящегося в р- n переходе, начинается разделение положительно и отрицательно заряженных частиц.
Первые элементы уходят в верхний слой, а вторые — в нижний. В результате образуется разность потенциалов, или постоянное напряжение. Если вкратце описать дальнейший процесс, то здесь фотопреобразователь работает словно батарейка. И как только на него воздействует дополнительная нагрузка, в цепи появляется электрический ток, сила которого зависит от разных факторов, включая:
Виды панелей
В настоящее время распространены разные виды солнечных батарей. В их числе:
Для монокристаллических панелей характерна невысокая продуктивность, однако они стоят относительно недорого, поэтому очень популярны. Если необходимо оборудовать дополнительную систему электропитания для альтернативной подачи тока при отключении основной, то покупка такого варианта вполне оправдана.
Поликристаллы находятся на промежуточной позиции по этим двум параметрам. Такие панели можно использовать для обеспечения централизованной подачи электроэнергии в тех местах, где доступа к стационарной системе по каким-либо причинам нет.
Что касается аморфных панелей, то они демонстрируют максимальную продуктивность работы, но это существенно повышает стоимость оборудования. В устройствах этого типа присутствует аморфный кремний. Стоит отметить, что приобрести их пока нереально, поскольку технология находится на стадии экспериментального применения.
Роль контроллера в батареях
Описанные выше фотоэлектрические преобразователи солнечной энергии могут быть достойной альтернативой для централизованных систем подачи электрической энергии, при условии, что их перестанут оснащать контроллерами, регулирующими степень заряда оборудования.
Предназначение таких элементов заключается в эффективном перераспределении получаемой энергии и дальнейшем направлении её к источнику потребления. Также эти детали способны сохранять полученный запас в аккумуляторе.
Сегодня распространены разные типы контроллеров, которые могут отличаться друг от друга степенью увеличения общей эффективности системы.
Кроме крупных, недешевых панелей в продаже предлагается множество доступных приборов, которые работают по такому же принципу. В последнее время получили популярность так называемые солнечные фонари, которые используются для декоративного освещения в ландшафтном дизайне.
Подобные осветительные приборы работают по тому же принципу: в верхней части размещена фотопластина. На протяжении солнечного дня эта деталь улавливает и преобразует солнечную энергию, которая затем сохраняется в небольшой батарее, размещенной у основания фонарика. Прибор расходует энергию в ночное время суток.
Аморфные кремниевые панели
Изделия аморфного типа, изготовленные из кремния, получают широкое распространение. В каждой панели есть пластины из стека, пластика или же фольги, на которые нанесен слой кремния, который создаются с помощью технологии напыления частиц в вакуумной среде.
Коэффициент полезного действия намного ниже, чем у остальных типов, т. к. он составляет всего лишь 6 процентов. К тому же кремниевые слои способны выгорать на солнце и уже через шесть месяцев эксплуатации терять эффективность. В конечном итоге она падает на 15, а иногда и на 20 процентов. Срок службы подобных приборов ограничивается двумя годами.
У подобных батарей есть определенные плюсы, которые делают их очень популярными:
В последнее время популярность стремительно набирают гибридные фотопреобразователи. В их основе — микрокристаллы, которые размещены на аморфном кремнии. По принципу действия эти панели сходны с поликристаллическими, отличаясь лишь более высокими мощностями вырабатываемого тока при воздействии рассеянного солнечного света, например, в пасмурную погоду или на рассвете.
К тому же их можно использовать не только под прямым ультрафиолетовым излучением, но и в инфракрасном диапазоне.
Пленочные полимерные преобразователи
Считаются достойной альтернативой для кремниевых изделий и заслуживают лидирующей позиции в списке самых продуктивных панелей на рынке. Уже из названия понятно, что такие батареи — это пленка, состоящая из нескольких слоев. Это сетка алюминиевых проводников, полимерный слой активного вещества, органическая подложка и защитная пленка.
Фотоэлементы соединены воедино и формируют пленочную солнечную батарею рулонного типа. В процессе производства выполняется многослойное нанесение на пленку фотоэлемента.
Такие приборы обладают небольшим весом и компактнее классическим кремниевых моделей. Для изготовления не нужно использовать дорогие материалы, а сам производственный процесс гораздо дешевле. В результате рулонные панели более востребованы из-за своей дешевизны.
Однако простой принцип действия существенно снижает показатели коэффициента полезного действия, поэтому он составляет всего лишь 6 процентов. Из минусов также отмечается лишь небольшая распространённость, т. к. модели пока находятся на стадии экспериментирования и практически не доступны для общего пользования.
Среди весомых преимуществ технологии — возможность изменять размер батареи, подгоняя его под любые параметры. Как считают эксперты, вскоре такие изобретения станут очень популярными, поэтому компании смогут запустить производство в больших масштабах.
Обустройство системы отопления
В настоящее время набирает популярность инновационные отопительные системы, работающие на основе солнечных преобразователей. Это самостоятельные устройства с уникальными конструктивными и техническими параметрами, отличающимися от солнечных батарей.
В качестве основного рабочего элемента для отопительных систем используется коллектор, который принимает солнечный свет и автоматически преобразовывает его в кинетическое электричество.
Площадь такой части варьируется от 30 до 70 квадратных метров. Чтобы зафиксировать коллектор нужно применять дополнительную технику, а для соединения пластин между собой используются металлические контакты.
Следующий компонент системы солнечного отопления — накопительный бойлер. Он обеспечивает эффективную трансформацию кинетической энергии в тепловую, и вызывает нагревание жидкости, объёмом до 300 литров. В некоторых случаях для поддержания оптимальной температуры воды используются дополнительные котлы на сухом топливе.
Завершающим узлом подобной системы являются напольные и настенные элементы, где по медным трубам циркулирует подогретая вода. За счёт низкой температуры запуска батарей и равномерной теплоотдачи, прогрев помещения осуществляется достаточно быстро.
Чтобы понять, как работают системы отопления дома на солнечных панелях, необходимо более подробно рассмотреть принцип их действия.
Между температурными показателями коллектора и накопительного элемента формируется определенная разница. Теплоноситель, в роли которого используется вода с антифризом, стремительно циркулирует по системе, в результате чего образуется кинетическая энергия.
После прохождения жидкости через отдельные слои системы, полученная энергия становится теплом, которое и обогревает помещение. Из-за таких особенностей в доме всегда сохраняется оптимальный температурный диапазон независимо от времени суток и года. Кстати, рынок таких систем постоянно расширяется, поэтому в ближайшем будущем они будут доступны для каждой среднестатистической семьи.
Как работают гелиосистемы
Однако мощности одного фотоэлемента не хватает, для обеспечения большинства хозяйственных нужд, т. к. даже при продолжительном световом дне он не способен выдавать необходимое количество электрической энергии.
Потому для повышения выходной мощности используют несколько фотопреобразователей, которые объединяются друг с другом по параллельной схеме. В результате происходит регулярное увеличение постоянного напряжения.
В свою очередь, силу тока повышают последовательным образом.
Продуктивность работы солнечных панелей зависит от некоторых факторов:
Важно понимать, что чем ниже показатели внешней температуры воздуха, тем лучше будет работать фотоэлемент и гелиобатарея в целом. Здесь всё объясняется простым принципом. А вот что касается расчёта нагрузки, то в данном случае ситуация выглядит сложнее. Эти показатели подбираются с учётом выдаваемого тока, но его величина способна меняться в зависимости от погодных условий.
Вести ручной мониторинг изменяющихся параметров батареи и постоянно подстраивать их проблематично. Вместо этого, целесообразно оборудовать систему автоматическим контроллером, который будет в автоматическом режиме изменять параметры гелиопанели, стремясь достичь максимальной продуктивности работы и оптимальных конфигураций.
Наукой доказано, что идеальный угол падения ультрафиолетовых лучей на гелиобатареию — прямой. Но если замечается отклонение в радиусе 30 градусов, серьезных потерь не ожидается, ведь эффективность снижается лишь на 5-10 процентов. Если же угол продолжает меняться, КПД ФЭП существенно упадёт.
Теперь вам известно, как работают разные типы солнечных батарей, которые стремительно превращаются из предмета роскоши в необходимую часть современной жизни.